Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS.

نویسندگان

  • Zhuowei Li
  • Jacqueline D Carter
  • Lisa A Dailey
  • Yuh-Chin T Huang
چکیده

Exposure to excessive vanadium occurs in some occupations and with consumption of some dietary regimens for weight reduction and body building. Because vanadium is vasoactive, individuals exposed to excessive vanadium may develop adverse vascular effects. We have previously shown that vanadyl sulfate causes acute pulmonary vasoconstriction, which could be attributed in part to inhibition of nitric oxide production. In the present study we investigated whether NO inhibition was related to phosphorylation of endothelial nitric oxide synthase (eNOS). VOSO4 produced dose-dependent constriction of pulmonary arteries in isolated perfused lungs and pulmonary arterial rings and a right shift of the acetylcholine-dependent vasorelaxation curve. VOSO4 inhibited constitutive as well as A23187-stimulated NO production. Constitutive NO inhibition was accompanied by increased Thr495 (threonine at codon 495) phosphorylation of eNOS, which would inhibit eNOS activity. Thr495 phosphorylation of eNOS and inhibition of NO were partially reversed by pretreatment with calphostin C, a protein kinase C (PKC) inhibitor. There were no changes in Ser1177 (serine at codon 1177) or tyrosine phosphorylation of eNOS. These results indicate that VOSO4 induced acute pulmonary vasoconstriction that was mediated in part by the inhibition of endothelial NO production via PKC-dependent phosphorylation of Thr495 of eNOS. Exposure to excessive vanadium may contribute to pulmonary vascular diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.

Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene...

متن کامل

Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116.

Nitric oxide (NO) production in endothelial cells (EC) is regulated by multisite phosphorylation of specific serine and threonine residues in endothelial NO synthase (eNOS). Among these, eNOS-Ser116 is phosphorylated in the basal state, and its phosphorylation contributes to basal NO production. Here, we investigated the mechanism by which eNOS-Ser116 is phosphorylated during the basal state us...

متن کامل

Vanadate is a potent activator of endothelial nitric-oxide synthase: evidence for the role of the serine/threonine kinase Akt and the 90-kDa heat shock protein.

We investigated the molecular mechanisms of sodium vanadate (vanadate)-induced nitric oxide (NO) production. Exposure of bovine lung microvascular cells (BLMVEC) to vanadate increased the release of biologically active NO in endothelium/smooth muscle cocultures, as measured by the accumulation of its surrogate marker, cGMP. This release was sensitive to NO synthase (NOS) inhibition and was grea...

متن کامل

PKC Activates eNOS and Increases Arterial Blood Flow In Vivo

Endothelial nitric oxide synthase (eNOS) plays an important role in control of vascular tone and angiogenesis among other functions. Its regulation is complex and has not been fully established. Several studies have emphasized the importance of phosphorylation in the regulation of eNOS activity. Although it is commonly accepted that protein kinase C (PKC) signaling inhibits eNOS activity by pho...

متن کامل

Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension.

Akt, also known as protein kinase B, is a serine/threonine kinase. Akt becomes active when phosphorylated by the activation of receptor tyrosine kinases, G protein-coupled receptors, and mechanical forces such as shear stress. Studies in vitro have shown that Akt can directly phosphorylate endothelial nitric oxide (NO) synthase (eNOS) and activate the enzyme, leading to NO production. The aim o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2004